Master axis

Forging is a processing method that uses a forging machine to apply pressure to a metal blank to plastically deform it to obtain a forging with certain mechanical properties, certain shape and size. Forging (forging and stamping) is one of the two major components.

Through forging, defects such as as-cast looseness produced by the metal during the smelting process can be eliminated, and the microstructure can be optimized. At the same time, due to the preservation of the complete metal streamline, the mechanical properties of forgings are generally better than those of castings of the same material. So do you know the three basic principles in the forging process? Below, the relevant personnel of Chinese professional forging manufacturers will give you a detailed introduction, let’s learn about it together!

Rocker arm forgings

1. The principle of constant volume

When forging each forging, the material should be calculated first, and the material should be cut according to the weight and fire consumption of the forging. (The basic formula for calculating the material G = ρV G – the weight of the billet ρ – the specific gravity of the material V – the volume of the billet) When calculating the material, the volume of the raw material must be calculated (due to the different specific gravity of various raw materials) and then multiplied by the specific gravity to get the forgings The weight of any forging is closely related to the volume before and after forging, such as pier thickening, drawing length, punching, mandrel drawing length, shoulder pressing, misalignment, bending and twisting during forging. Its overall volume remains the same, but the shape is changing, such as from a circle to a square, from a square to a circle, from an octagonal to a circle, etc., but the volume remains unchanged.

2. The principle of least resistance

Before forging, specifying the process and selecting equipment must consider the deformation law of the workpiece. There are three categories of basic process, auxiliary process and shaping process in free forging.

For example, if the pier is thick: the workpiece is axially stressed and has no radial resistance, and it changes from the axial direction to the radial flow. The greater the axial resistance, the faster the radial flow. The smaller the axial resistance, the slower the radial flow.
Lengthening: Rectangular section and circular section are elongated, mainly due to the amount of feed and reduction. If the upper and lower flat anvils are used for lengthening, the narrower the width of the anvil, the smallest axial resistance, while the longitudinal resistance is large. , so the axial flow is larger than the longitudinal flow.

V-shaped anvil pulling: If the upper and lower V-shaped anvils are used for pulling (referring to the round material), the lateral flow is restricted, and the metal is forced to flow in the axial direction, and the pulling speed is increased. The same is true for the upper and lower semicircular anvils falling round.

Flange shaft

Horse bar reaming: During the forging process of horse bar reaming, the contact surface between the upper anvil and the workpiece and the horse bar is small, resulting in the influence of friction, the resistance is small, the wall thickness is reduced, and the inner and outer diameters are enlarged.

Lengthening of the mandrel: Generally, the four angles of the upper and lower V-shaped anvils are used to generate resistance, and the contact surface between the workpiece and the tooling is reduced, forcing the metal to flow along the axial direction and increasing the length. Therefore, the principle of minimum resistance is inseparable from the principle of minimum resistance when formulating the process and selecting tooling in the forging process.

3. Principles of stress and elasticity

This principle is mainly used for the workpiece after forging, heating, cooling and heat treatment, the formulation of the workpiece after forging, the final forging temperature of the workpiece after forging and the material of the workpiece, and the shrinkage force is not equal. The internal stress of the workpiece is formulated, the cooling system after breaking and the heat treatment specification. This principle is very important.

Three-way valve

Stress includes: temperature stress (thermal stress), tissue stress, residual stress. When processing large forgings, the larger the rectangular section and the circular section, the more prominent the thermal stress, stress and residual stress. When the billet is heated, the greater the temperature difference between the inside and outside, the greater the thermal stress generated. Therefore, when heating large forging blanks, the temperature must be fully and uniformly heated through, and the temperature must be strictly controlled.

Strain stress: Forging the workpiece is mainly to break the as-cast structure and refine the grains. When the deformation reaches a certain level, the as-cast coarse grains, dendrites and grain boundary substances are broken. The workpiece is deformed, yielded, closed, pressed, welded, and compacted. After reasonable forging, the compactness, continuity and mechanical properties of the workpiece can be significantly improved, but the workpiece will generate its own structural deformation stress during forging. When the pressure is super high, the deformation stress that occurs is super strong. Cold rolls such as 9Cr2Mo perform particularly well during heating and post-forging heat treatment.

Residual stress: It is the general term for the residual stress after heating and forging. Often appear in large and medium forgings. In particular, forgings must be strictly checked and strictly required in the next step after forging. It is crucial to the quality assurance of forgings.

The above three principles are very important, and they are also the basic knowledge that every forging person must master. To become a qualified blacksmith.

Locking frame forgings

Cold forging is a process in which metals are formed by forging at room temperature. Cold forging includes deformation forms such as upsetting, die forging and extrusion, and is a cold bulk forming. The cold forging process was developed from cold extrusion and gradually extended to cold die forging and cold precision forging.

Compared with hot die forging, the main advantage of cold forging is that the blank is not heated, so there are no forging dimensions and inherent quality problems caused by heating, and heating equipment is omitted. Cold forgings have high dimensional accuracy, small roughness values, reduce cutting, save materials and reduce costs, and are easy to realize mechanized and automated production. Therefore, it is widely promoted and applied in industries such as automobiles, motorcycles, bicycles, tractors, home appliances, textile machinery, military industry and aviation industry, and is expanding day by day.

Types of cold forgings

1. Extrusion: cold extrusion, which can be divided into positive extrusion, reverse extrusion and compound extrusion.

2. Upsetting category: cold upsetting can be divided into upsetting and partial upsetting
.
3. Die forging: It is finally formed by cold forging, which can be divided into small burr die forging and closed burr-free die forging.

4. Precision forging: cold precision bevel gear tooth profile, spline and straight tooth profile.

Bracket-k

Cold forging process characteristics

Cold forging products are of good quality, processed at room temperature, with high dimensional accuracy, smooth surface and good mechanical properties. It can also process forgings with complex shapes, reduce cutting, save material consumption and reduce costs.

The deformation resistance is large, and measures to reduce the deformation resistance must be taken: adjusting the chemical composition of raw materials, pre-treatment of the blank, improving the deformation process, improving the hardness and finish of the mold, and controlling the pressurization speed of the equipment.

Cold deformation strengthening and thermal effect, in the process of cold forging, as the degree of deformation increases, the cold deformation strengthening phenomenon in which the strength and hardness of the metal also increase. Cold deformation strengthening can be used to strengthen the strength and hardness of the product and improve the mechanical properties.

Due to the conversion of mechanical energy into thermal energy, the temperature of the billet will increase, known as thermal effect. To control the billet temperature does not exceed 400 ℃.

The friction force is large, the cold forging deformation force is large, the unit pressure is also large, and the friction force between the metal and the die surface is also high, so the lubrication conditions must be improved to reduce the friction force.

Mechanization and automation, processing at room temperature, good labor conditions, easy to realize mechanization and automation, suitable for mass production.

The cold forging drawing is designed according to the part drawing, which is the main basis for formulating the process, designing the mold and checking the forging. According to the design characteristics, it is divided into cold extrusion and cold die forging design.

Forgings

Design points of cold die forgings

1. Cold-forged or cold-extruded parts should be as axially symmetrical as possible to ensure that the metal flows evenly during the forming process.

2. Determine the shape, size, location and technical requirements of cold forging without cutting after direct forming according to the part drawing.

3. Parting surface: cold forgings can be divided into two forms: small burr open die forging and closed die forging. The position of the parting surface of the small burr is usually set on the largest diameter or the end face of the largest diameter.

4. Machining allowances and tolerances: After cold forging, no machining allowances will be made for the parts that are not machined, which are the same as the dimensions and tolerances of the parts drawing. There is no need to exact product accuracy for the remaining parts to be machined.

5. Ejection slope and fillet radius: During cold forging, an ejector is generally provided, and the ejection slope is about 0°~3°. The fillet radius is based on R2, and it can be increased or decreased according to the requirements of the part drawing. However, during cold forging, if the fillet is too large, it will affect the forming.

The main technical problem of using the cold forging process is that the metal has high strength in the cold state, and it has a strengthening effect during the deformation process. Focusing on this central issue, only effective measures can be taken from the aspects of raw materials, blank pretreatment, cold forging deformation process, molds and equipment, etc., in order to achieve success.

Forging blank

Forging is a processing method that uses a forging machine to apply pressure to a metal blank to plastically deform it to obtain a forging with certain mechanical properties, certain shape and size. Forging (forging and stamping) is one of the two major components. Through forging, defects such as as-cast looseness generated in the metal smelting process can be eliminated, and the microstructure can be optimized. At the same time, due to the preservation of the complete metal streamline, the mechanical properties of forgings are generally better than those of castings of the same material. For important parts with high load and severe working conditions in related machinery, forgings are mostly used in addition to rolling plates, profiles or welded parts with simple shapes.

The initial recrystallization temperature of steel is about 727 °C, but 800 °C is generally used as the dividing line, and hot forging is higher than 800 °C; between 300 and 800 °C, it is called warm forging or semi-hot forging. called cold forging.

Forgings used in most industries are hot forging. Warm and cold forging are mainly used for forging parts such as automobiles and general machinery. Warm and cold forging can effectively save materials.

Process classification

According to the forging temperature, it can be divided into hot forging, warm forging and cold forging.

According to the forming mechanism, forging can be divided into free forging, die forging, ring rolling and special forging.

Rocker arm forgings

1. Free forging

It refers to the processing method of forgings that use simple universal tools or directly apply external force to the blank between the upper and lower anvils of the forging equipment to deform the blank to obtain the required geometric shape and internal quality. Forgings produced by the free forging method are called free forgings. Free forging is mainly based on the production of small batches of forgings. Forging equipment such as forging hammers and hydraulic presses are used to form and process the blanks to obtain qualified forgings. The basic processes of free forging include upsetting, drawing, punching, cutting, bending, torsion, offset and forging. Free forging is all hot forging.

Advantages: Free forging has the characteristics of flexible process, high versatility of equipment and tools, and low cost. Since free forging is formed gradually, the required deformation force is small, so it is the only way to produce large forgings (above 300T).

Disadvantages: low productivity, low precision forgings, high labor intensity, mostly used for single-piece and small batch production of forgings with simple shapes and low precision requirements.

2. Die forging

Die forging is divided into open die forging and closed die forging. The metal blank is compressed and deformed in a forging die cavity with a certain shape to obtain a forging. Die forging is generally used to produce parts with small weight and large batches. Die forging can be divided into hot forging, warm forging and cold forging. Warm forging and cold forging are the future development direction of die forging, and also represent the level of forging technology.

According to the material, die forging can also be divided into ferrous metal die forging, non-ferrous metal die forging and powder product forming. As the name implies, the materials are ferrous metals such as carbon steel, non-ferrous metals such as copper and aluminum, and powder metallurgy materials. Extrusion should belong to die forging, which can be divided into heavy metal extrusion and light metal extrusion.

Closed die forging and closed upsetting are two advanced processes of die forging. Since there is no flash, the utilization rate of materials is high. It is possible to complete the finishing of complex forgings in one or several operations. Since there is no flash, the stressed area of ​​the forging is reduced and the required load is also reduced. However, it should be noted that the blank cannot be completely restricted. For this reason, the volume of the blank should be strictly controlled, the relative position of the forging die should be controlled and the forging should be measured, and efforts should be made to reduce the wear of the forging die.

Hinge

3. Rolling ring

Ring rolling refers to the production of ring-shaped parts of different diameters through special equipment ring-grinding machines, and is also used to produce wheel-shaped parts such as automobile hubs and train wheels.

4. Special forging

Special forging includes roll forging, cross wedge rolling, radial forging, liquid die forging and other forging methods, which are more suitable for the production of parts with special shapes. For example, roll forging can be used as an effective preforming process to greatly reduce the subsequent forming pressure; cross wedge rolling can produce parts such as steel balls and drive shafts; radial forging can produce large forgings such as barrels and stepped shafts.

Forging die

According to the movement mode of the forging die, forging can be divided into pendulum rolling, pendulum rotary forging, roll forging, cross wedge rolling, ring rolling and skew rolling. Pendulum rolling, pendulum swaging and ring rolling can also be processed by precision forging. In order to improve the utilization rate of materials, roll forging and cross-rolling can be used as front-end processing of slender materials. Rotary forging, like free forging, is also locally formed, and its advantage is that it can be formed with a small forging force compared to the size of the forging. In this forging method, including free forging, the material expands from the vicinity of the die surface to the free surface during processing, so it is difficult to ensure accuracy. The forging force can be used to obtain products with complex shapes and high precision, such as forgings such as steam turbine blades with many varieties and large sizes.

Flange joint

The movement of the die and the degree of freedom of the forging equipment are inconsistent. According to the deformation limitation characteristics of the bottom dead center, the forging equipment can be divided into the following four forms:

1. The form of limiting forging force: hydraulic press that directly drives the slider.

2. Quasi-stroke limit method: hydraulic press that drives the crank connecting rod mechanism.

3. Stroke limitation method: mechanical press with crank, connecting rod and wedge mechanism driving the slider.

4. Energy limitation method: use the screw and friction press of the screw mechanism.

In order to obtain high precision, care should be taken to prevent overload at the bottom dead center, and to control the speed and mold position. Because these will have an impact on forging tolerances, shape accuracy and forging die life. In addition, in order to maintain the accuracy, attention should also be paid to adjusting the clearance of the slider guide rail, ensuring the rigidity, adjusting the bottom dead center and using the auxiliary transmission device.

Slider

There are also vertical and horizontal motions of the slider (for forging of slender parts, lubricating cooling and forging of parts for high-speed production), and the compensation device can be used to increase the motion in other directions. The above methods are different, and the required forging force, process, material utilization, output, dimensional tolerance and lubrication and cooling methods are different, and these factors are also factors that affect the level of automation.

Different forging methods have different processes. Among them, the process of hot die forging is the longest, and the general order is: blanking of forging billet; heating of forging billet; roll forging preparation billet; die forging forming; trimming; punching; straightening; Intermediate inspection to check the size and surface defects of forgings; heat treatment of forgings to eliminate forging stress and improve metal cutting performance; cleaning, mainly to remove surface oxide scale; correction; inspection, general forgings are subject to appearance and hardness inspections, important forgings also It must undergo chemical composition analysis, mechanical properties, residual stress and other inspections and non-destructive testing.

Agricultural machinery bearing sleeve

The forging products of the forging factory are plastically deformed by forging processing. The forging process is a processing method for the blanks or parts that use the external force to plastically deform the forging raw materials and obtain the size, shape and performance required for the forgings. Through forging processing can eliminate defects such as as-cast looseness caused by metal in the smelting process, optimize the microstructure, and at the same time greatly enhance the performance of forgings in use due to the preservation of the complete metal forging flow line.

Forging is one of the main methods for the production of blanks and parts in mechanical manufacturing. It is often divided into free forging and die forging. Compared with other processing methods, forging processing has the following characteristics:

1. Improve the internal structure of forgings and improve mechanical properties. After the forging blank is forged, its structure and properties are improved and improved. Forging processing can eliminate defects such as pores, shrinkage cavities and dendrites in the metal ingot, and can be coarsened due to plastic deformation and recrystallization of the metal. The grain is refined to obtain a dense metal structure, thereby improving the mechanical properties of the forging. In the design of the part, if the direction of the force of the part and the direction of the fiber structure are correctly selected, the impact resistance of the forging can be improved.

2. The utilization rate of materials is high. Metal plastic forming is mainly rearranged by the relative position of the metal body structure without the need to cut the metal.

3. Higher productivity. Forging processing is generally carried out by using a press and a forging hammer.

4. The accuracy of blanks or forgings is high. With advanced technology and equipment, it can achieve less or no cutting.

5. The metal material used for forging should have good plasticity so that it can be plastically deformed without breaking under the action of external force. Among the commonly used metal materials, cast iron is a brittle material with poor plasticity and cannot be used for forging. Copper, aluminum and alloys thereof in steel and non-ferrous metals can be processed under cold or hot conditions.

6. It is not suitable for forming forgings with complex shapes. Forging processing is formed in the solid state. Compared with casting, the flow of metal is limited, and it is generally required to adopt heating and other technological measures. It is difficult to manufacture parts or blanks with complex shapes, especially those with complex internal cavities.

Since forging has the above characteristics, important parts subjected to impact or alternating stress (such as transmission spindle, ring gear, connecting rod, track wheel, etc.) should be processed by forging blanks, so forging processing in machinery manufacturing, mining, light industry Heavy industry and other industries have been widely used.

Automotive transmission system accessories sliding fork forgings

Automotive transmission system accessories sliding fork forgings

Forging is one of many materials processing methods.

Forging is generally a volume forming process in which a machine part or a blank close to the part size is obtained by transferring and distributing the metal volume. The forged product is called a forging. Forging is mostly carried out under heating. The metal material is formed into a shape by forging, and the desired shape and size can be obtained, and the internal structure thereof can be remarkably improved, and the use performance is improved. Therefore, various parts or components that are subjected to large and complex loads are generally produced by a forging method.

Forging is usually divided into two categories: free forging and die forging.

Free forging is generally performed on free forging equipment using a simple tool to forge metal ingots or blocks into specific shapes and sizes. Free forging is mainly used for single-piece and small-volume production. As the demand for batches increases, the tools used are becoming more complex, resulting in tire die forging. Forging workshops of various types of mechanical repairing factories are mostly produced by free forging and tire die forging. Large forgings (such as large steam turbine rotors and turbines, giant wheels and aircraft engine crankshafts) required to manufacture critical load-bearing parts in heavy-duty machines also require free forging on large hydraulic presses.

Die forging is a forging method suitable for mass production of forgings. In the case of die forging, a forging die having a cavity (mold) having the same or similar shape as the forging is used, the forging die is mounted on the forging machine, the metal blank is placed in the die of the forging die, and the forging machine is passed. The forging die applies a load to the blank to plastically deform the blank, and the deformation flow is controlled by the die space. Die forging is also often introduced into a variety of volume forming methods for the production of forgings, such as extrusion, roll forging, cross rolling, etc. can be included in the scope of die forging.

In addition to high productivity, die forging also has the advantages of accurate shape and size of forgings, high material utilization, more reasonable streamline distribution, high service life of parts, and easy production and operation.

Raw-material

Raw-material

The forging materials are mainly carbon steel and alloy steel of various compositions, followed by aluminum, magnesium, copper, titanium and the like and alloys thereof. The raw state of the material is bar, ingot, metal powder and liquid metal. The ratio of the cross-sectional area of ​​the metal before deformation to the cross-sectional area after deformation is called the forging ratio. Correct selection of forging ratio, reasonable heating temperature and holding time, reasonable initial forging temperature and final forging temperature, reasonable deformation and deformation speed have a great relationship to improve product quality and reduce cost.

Conventional small and medium forged materials use round or square bars as blanks. The grain structure and mechanical properties of the bar are uniform and good, the shape and size are accurate, and the surface quality is good, which is convenient for mass production. As long as the heating temperature and deformation conditions are properly controlled, high-quality forgings can be forged without requiring large forging deformation.

Ingots are only used for large forgings. The ingot is an as-cast structure with large columnar crystals and a loose center. Therefore, it is necessary to break the columnar crystal into fine crystal grains by large plastic deformation, and loosely compact, in order to obtain excellent metal structure and mechanical properties.

The powder metallurgy preform which is pressed and sintered can be made into a powder forging by hot forging without flashing. Forging powder is close to the density of general die forgings, has good mechanical properties, and has high precision, which can reduce subsequent cutting. The powder forgings have a uniform internal structure and are not segregated and can be used to manufacture workpieces such as small gears. However, the price of powder is much higher than the price of ordinary bars, and its application in production is limited.

By applying static pressure to the liquid metal poured in the mold to solidify, crystallize, flow, plastically deform and form under pressure, a die forging of desired shape and performance can be obtained. Liquid metal die forging is a forming method between die casting and die forging, and is particularly suitable for complex thin-walled parts which are difficult to form by general die forging.

Forging materials in addition to the usual materials, such as various components of carbon steel and alloy steel, followed by aluminum, magnesium, copper, titanium and other alloys, iron-based superalloys, nickel-based superalloys, cobalt-based superalloys The deformed alloys are also finished by forging or rolling, except that the alloys are relatively narrow in plasticity, so the forging difficulty is relatively large, and the heating temperature, opening and forging temperature and final forging temperature of different materials have strict requirements.